

MULTI-MONTI®-plus

Europäisch Technische Bewertung ETA-15/0784

Mechanische Dübel zur Verwendung in Beton

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0784 vom 2. Juni 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Mechanische Dübel zur Verwendung im Beton

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG Werk Schramberg

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

ETA-15/0784 vom 23. April 2018

Europäische Technische Bewertung ETA-15/0784

Seite 2 von 19 | 2. Juni 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z46947.21 8.06.01-708/20

Europäische Technische Bewertung ETA-15/0784

Seite 3 von 19 | 2. Juni 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schraubanker MULTI-MONTI-plus ist ein Dübel in den Größen 6, 7,5, 10, 12, 16 und 20 mm aus galvanisch verzinktem oder nichtrostendem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen	Siehe Anhang C 1 und C 2
Verschiebungen	Siehe Anhang C 6 und C 7
Charakteristischer Widerstand und Verschiebungen für seismische Leistungskategorien C1 und C2	Siehe Anhang C 3 und C 4

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 5

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B 1

Z46947.21 8.06.01-708/20

Europäische Technische Bewertung ETA-15/0784

Seite 4 von 19 | 2. Juni 2021

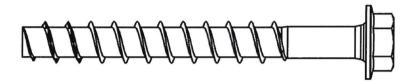
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

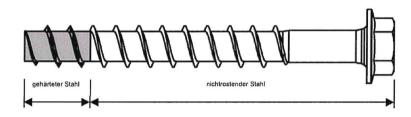
Folgendes System ist anzuwenden: 1

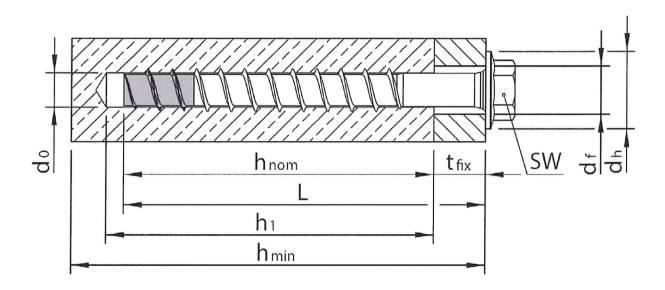
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 2. Juni 2021 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin




Produkt und Einbauzustand

MMS-plus / C-Stahl

MMS-plus / nichtrostender Stahl

z.B. MMS-plus A4 SS aus nichtrostendem Stahl, Ausführung mit Sechskantkopf und Scheibe

d₀ = nomineller Bohrlochdurchmesser h_{nom} = nominelle Verankerungstiefe

 $egin{array}{lll} h_1 &=& & Bohrlochtiefe \\ h_{min} &=& & Mindestbauteildicke \\ t_{fix} &=& & Dicke des Anbauteils \\ \end{array}$

d_f = Durchmesser Durchgangsloch im Anbauteil

MULTI-MONTI-plus	
Produktbeschreibung Produkt und Einbauzustand	Anhang A 1

Tabelle A1: Schraubenausführungen

Ausführungsbeispiel		Berna	Bezeichnung
	3.44. 2.86.4	1)	Sechskantkopf mit und ohne Beilagescheiben (alternative Ausführung mit Konus unter dem Kopf) (S)
	(med)	2)	Sechskantkopf und angepresster Schreibe (SS)
	(SANT)	3)	Sechskantkopf mit angepresster Scheibe und Konus unter der Scheibe (SSK)
(Justitititi)	2 0 1	4)	PanHead mit kleinem Rundkopf (P)
TITITITI (ME SPORTS	5)	Montageschienenschraube mit großem Rundkopf (MS)
**************************************	X C	6)	Senkkopf (F)
ATTITITIAN CULTURA		7)	Senkkopf und Unterkopfgewinde, eingängig oder mehrgängig (FT)
		8)	Zylinderkopf und Unterkopfgewinde, eingängig oder mehrgängig (alternativ auch Sechskantkopf und PanHead möglich) (ZT, SST & PT)
		9)	Stockanker mit metr. Anschlussgewinde (ST)
	(<u>o</u>)	10)	Schraube mit metr. Anschlussgewinde zur Aufnahme einer Innengewindehülse (vormontiert mit Hülse) (I)
	0	11)	Vorsteckanker mit metr. Anschlussgewinde (V)
	٥	12)	Rundkopf und Unterkopfgewinde, eingängig oder mehrgängig mit abweichenden Durchmessern gegenüber dem Betongewinde (andere Ausprägung möglich) (DWC)
	(\$.3)	13)	Senkkopf und Unterkopfgewinde mit abweichenden Durchmessern gegenüber dem Betongewinde (TC)

MULTI-MONTI-plus	
Produktbeschreibung Schraubenausführungen	Anhang A 2

Tabelle A2: Abmessungen, Material und Kennzeichnung

C-Stahl 1)			Ø					
C-Stan	1 '		6	7,5	10	12	16	20
Außendurchmesser	ds	[mm]	6,65	7,75	10,5	12,6	16,7	21,2
Kerndurchmesser	dk	[mm]	4,3	5,45	7,3	9,05	13,3	17,4
1 2	L≥	[mm]	35	35	50	75	100	140
Länge	L≤	[mm]	500	500	500	600	800	800
Bruchdehnung	A ₅	[%]			≤	8		***************************************

1) galvanisch verzinkter Stahl nach EN 10263-4:2001 (mehrlagige Beschichtungssysteme sind möglich)

nichtrostender Stahl ²⁾			Ø			
nichtrostende	er Stani -		7,5	10	12	
Außendurchmesser	ds	[mm]	7,65	10,5	12,6	
Kerndurchmesser	dk	[mm]	5,45	7,3	9,25	
1 =	L≥	[mm]	35	60	90	
Länge	L≤	[mm]	500	500	500	
Bruchdehnung	A ₅	[%]		≥ 8		

Kennzeichnung

2) Nichtrostender Stahl 1.4401, 1.4462, 1.4578, 1.4529 und 1.4571 gemäß EN 10088-1:2005

	L	
0	õ	

z.B. 7,5 z.B. 75	Dübelgröße Dübellänge
A4 + A5	zusätzliche Kennzeichnung für nichtrostenden Stahl und CRC III
FA	zusätzliche Kennzeichnung für nichtrostenden Stahl und CRC IV
KK	zusätzliche Kennzeichnung für hochkorrosions- beständigen Stahl

Merkmal

Dübeltyp

Werkzeichen

Prägung H

MMS+

Prägung		
MMS+		
MMS+ A4		
MMS+ FA		
MMS+ A5		
MMS+ KK		
	MMS+ MMS+ A4 MMS+ FA MMS+ A5	

MULTI-MONTI-plus	
Produktbeschreibung Schraubenausführungen	Anhang A 3

Z46946.21 8.06.01-708/20

Spezifizierung des Verwendungszwecks

Tabelle B1: Beanspruchung der Verankerung

Größe MMS-plus			6	7,5	10	12	16	20
Einschraubtiefe	h _{nom}	[mm]			a	lle		
Kopfformen					al	lle		
Statische und quasi-stat	tische La	asten						
in gerissenem und unge	rissener	m				k		
Beton					U	JK.		
Brandbeanspruchung								
Größe MMS-plus	4 5 7		1	0	1	2	16	20
Einschraubtiefe	h _{nom}	[mm]	6	5	75	90	115	140
Kopfformen	1 -	- 13	1 –	- 13	1 – 13	1 – 13		
Seismische Einwirkung 1) 2) C1				k	ok ok			
		C2		keine Leistu	ing bewerter	t	OK	ok

¹⁾ Nur C-Stahl (A4-/HCR-Stahl nicht bewertet)

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206-1:2013 + A1:2016
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2013 + A1:2016
- · Gerissener oder ungerissener Beton.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: alle Schraubentypen
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015, Tabelle A.1 in Abhängigkeit von der Korrosionsbeständigkeitsklasse:

- CRC III: Schrauben mit der Kopfprägung MMS+ A4, MMS+ A5

- CRC IV: Schrauben mit der Kopfprägung MMS+ FA

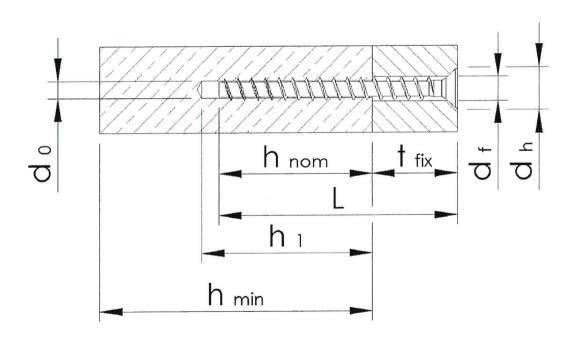
- CRC V: Schrauben mit der Kopfprägung MMS+ KK

Bemessuna:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerung unter statischer und quasi-statischer Beanspruchung und bei Brandbeanspruchung erfolgt nach EN 1992-4:2018 und EOTA Technical Report TR 055.
- Die Bemessung unter Querbeanspruchung nach EN 1992-4:2018, Abschnitt 6.2.2 gilt für alle in Anhang B2, Tabelle B1 und Anhang B3, Tabelle B2 angegebenen Durchmesser df des Durchgangslochs im Anbauteil.

Einbau:

- Bohrlochherstellung nur durch Hammerbohren.
- · Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Leichtes Weiterdrehen des Dübels ist nicht möglich.
- Der Dübelkopf liegt am Anbauteil an und ist nicht beschädigt, bzw. die erforderliche Einschraubtiefe hnom ist erreicht.


Anhang B 1

²⁾ Bei Kopfform 9 + 10 und Verwendung des metrischen Anschlussgewindes ist nur eine axiale seismische Einwirkung zulässig

Tabelle B2: Montagekennwerte MMS-plus C-Stahl

Größe MMS-	plus				6	7	,5	1	0	1	2	16		20
Einschraubtie	efe	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Bohrnenndur	chmesser	d₀	[mm]	5		6		8		10		14		18
Bohrschneide	en-Ø	d _{cut} ≤	[mm]	5,40		6,40		8,4	45	10	,45	14,50		18,50
Bohrlochtiefe Reinigung	mit	h₁≥	[mm]	40	50	40	65	60	75	85	100	115	130	155
Durchgangslo	och Anbauteil	df≤	[mm]		7	,	9	12	2,5	14	,5	1	9	23
Durchmesser	Senkkopf	dh	[mm]	11	1,5	15	5,5	19	,5	2	4		-	_
Mindestbaute	ildicke	h _{min}	[mm]	1	00	10	00	100	115	125	150	15	50	180
gerissener und ungerissener	Minimaler Achs- abstand	Smin	[mm]	3	0	3	5	3	5	4	0	6	0	80
Beton	Minimaler Rand- abstand	Cmin	[mm]	3	0	3	0	3	5	4	0	6	0	80
empfohlenes Setzgerät			[Nm]	Elektrische				gemäß	-Schlagschrauber, ma gemäß Herstelleranga 250 250		ngab			bgabe T _{max}
Montagedreh metrisches G (MMS-plus V)	ewinde	Tinst	[Nm]		-	1	5	2	0	3	0	55	70	140

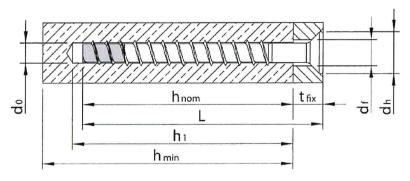

MULTI-MONTI-plus	
Verwendungszweck Montagekennwerte	Anhang B 2

Tabelle B3: Montagekennwerte MMS-plus nichtrostender Stahl

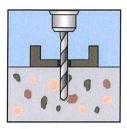
Größe MMS-plus	s A4				7,5			10	12		
Bohrnenndurchm	esser	d₀	[mm]		6			8	1	0	
Bohrschneiden-Ø	5	d _{cut} ≤	[mm]		6,40		8,	45	10,45		
Einschraubtiefe	hnom.standard	h _{nom}	[mm]	40	55	75	70	85	100	115	
Bohrlochtiefe mit	Reinigung	h₁≥	[mm]	45	60	85	80	95	110	125	
Bohrlochtiefe ohn Reinigung 1)	h₁≥	[mm]				h _{nom} +	2 x d _o				
Bohrlochtiefe mit Adjustierung ¹⁾		h _{1,adj} ≥	[mm]	-			h _{nom,ac}	_{ij,0} + 10 r	nm		
Bohrlochtiefe mit Adjustierung ohne Bohrlochreinigung		h _{1,adj} ≥	[mm]	-			h _{nom,a}	_{dj,0} + 2 x	d ₀		
Einschraubtiefe	h _{nom,reduced}	h _{nom}	[mm]	35	50	65	60	75	90	105	
Bohrlochtiefe mit	Reinigung	h₁≥	[mm]	40	55	75	70	85	100	115	
Bohrlochtiefe ohn Reinigung 1)	Bohrlochtiefe ohne			h _{nom} + 2 x d _o							
Bohrlochtiefe mit Adjustierung ¹⁾		h _{1,adj} ≥	[mm]		h _{nom,adj,0} + 10 mm						
Bohrlochtiefe mit Adjustierung ohne Bohrlochreinigung		h _{1,adj} ≥	[mm]		h _{nom,adj,0} + 2 x d ₀						
Durchgangsloch /	Anbauteil	d _f ≤	[mm]		9,0		12	2,5	14	,5	
Durchmesser Ser	nkkopf	dh	[mm]		13,6		1	7	2	1	
Mindestbauteildic	ke	h _{min}	[mm]		100		115	125	15	50	
gerissener und ungerissener Beton	Minimaler Achsabst and	S _{min}	[mm]		35 35			4	40		
	C _{min}	[mm]		30		35 40			0		
empfohlenes Setzgerät			[Nm]	Elektrischer Tangential-Schlagschrauber, m Leistungsabgabe T _{max} gemäß Herstelleranga				ngabe			
				185	185 200			450		600	

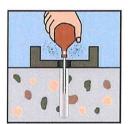
Es sollte sichergestellt werden, dass die Anforderung an die Mindestbauteildicke $h_{min} \ge h_1 + \Delta h$ mit $\Delta h = max (2 x d_0; 30 mm)$ erfüllt ist.

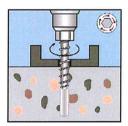
MULTI-MONTI-plus Verwendungszweck Montagekennwerte Anhang B 3

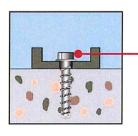
Kontrolle der Justierung und Montage

Die Schraube darf maximal zweimal justiert werden. Dabei darf die Schraube bis zu einem Maximum $L_{adj}=10$ mm von der Oberfläche des Anbauteil gelöst werden. Die Ausgangsbohrtiefe für die Justierung muss $h_{1,adj}$ betragen (siehe Tabelle B3 Anhang B3). Die Unterfütterung darf insgesamt bis zu 10 mm betragen. Die erforderliche Setztiefe h_{nom1} und h_{nom2} , bzw. für Ø 7,5 h_{nom2} und h_{nom3} , muss auch nach der Justierung eingehalten sein.


MULTI-MONTI-plus		
Verwendungszweck Montagekennwerte	Anhang B 4	


Setzanweisung MMS-plus


Informationen der Zulassung beachten!


Bohrloch dreh-schlagend bis zur erforderlichen Bohrlochtiefe erstellen

Bohrmehl entfernen, z.B. durch Ausblasen

Setzen des Schraubankers mit Tangential-Schlagschrauber oder von Hand

Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt

MULTI-MONTI-plus

Verwendungszweck Montagekennwerte Anhang B 5

Tabelle C1: Leistung für statische und quasi-statische Beanspruchung MMS-plus C-Stahl

Größe MMS-plu	ıs				(6	7	7,5	1	0		2		16	20
Einschraubtiefe			h _{nom}	[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Stahlversagen 1	für Zu	ıg- und G	uertra	gfähigk	ceit										
Charakteristisch Tragfähigkeit	e		N _{Rk,s}	[kN]	10,8		17,6		32,1		49,9		111,1		190,2
Teilsicherheitsbeiwert			2/M= N	[-]						1	50				
Charakteristisch	All Sales Control Control Co		γMs,N				Г						Γ		
Tragfähigkeit			V ⁰ Rk,s	[kN]	4	,1	6	5,1	13	3,7	24	1,1	5	0,2	85,3
Teilsicherheitsbe	eiwert		γMs,V	[-]						1,	25				
Duktilitätsfaktor			k ₇	[-]						0	,8				
Charakteristisch Tragfähigkeit	е		M ⁰ Rk,s	[Nm]	6	,7	1.	4,1	34	1,5	66	5,8	20	7,6	464,3
Herausziehen								. Y							
Charakteristisch Tragfähigkeit in Beton C20/25		rissenem	$N_{Rk,p}$	[kN]	5,5	8	4				2	≥ N ^o Rk	(, c		
Charakteristische Tragfähigkeit in gerissenem Beton C20/25		senem	N _{Rk,p}	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Erhöhungsfaktor	r für	C30/37								1,	22	- 1717			
Druckfestigkeits-	-	C40/50	Ψ_c	[-]	1,41										
klassen		C50/60								1,	58				
Betonausbruch	und	Spalten													
Effektive Verank	erung	stiefe	hef	[mm]	26	35	26	43	36	50	57	70	77	90	114
F - 1 . 4 6"	geris	ssen	K _{cr,N}	[-]						7	,7				
Faktor für	unge	erissen	K _{urc,N}	[-]	11,0										
Datasassahassah	Ran	dabstand	Ccr,N	[mm]	1.5 hef										
Betonausbruch	Achs	sabstand	Scr,N	[mm]						3	h _{ef}				
See Employ	Cha	rakt. ıfähigkeit	N ⁰ Rk,sp	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Spalten		dabstand	C _{cr,sp}	[mm]			-	1 100		1.5	h _{ef}				
Achsabstand		S _{cr,sp}	[mm]						3	h _{ef}					
Montagebeiwert γinst			[-]						1	,0					
Betonausbruch auf der lastabgewandten Seite															
k-Faktor k ₈ [-]					1,0 2,0										
Betonkantenbri	uch												e vyjeg kaz "Bai		
Wirksame Dübel			$I_f = h_{ef}$	[mm]	26	35	26	43	36	50	57	70	77	90	114
Wirksamer Durc	hmes	ser	d _{nom}	[mm]	5	5		6	8	3	1	0	1	4	18

¹⁾ Nur für statisch unbestimmte Systeme

MULTI-MONTI-plus	
Leistungen Charakteristische Werte für statische und quasi-statische Zugbeanspruchung	Anhang C 1

Z46946.21 8.06.01-708/20

Tabelle C2: Leistung für statische und quasi-statische Beanspruchung MMS-plus nichtrostender Stahl

		Bean	spruch	ung	MMS	S-pi	us r	nich	tros	sten	der
Größe MMS-plu	ıs					7,5		10		1	2
Stahlversagen 1	für Z	ug- und Quei	zug							E PAPE	
Charakteristisch	e Tra	gfähigkeit	$N_{Rk,s}$	[kN]		16		2	29	4	15
Teilsicherheitsbe	eiwer	t	γMs,N	[-]				1,4			
Charakteristisch	e Tra	gfähigkeit	V ⁰ Rk,s	[kN]	2	11	14	18	28	23	27
Teilsicherheitsbe	eiwer	t	γMs,V	[-]				1,4			
Duktilitätsfaktor			k ₇	[-]							
Charakteristisch	e Tra	gfähigkeit	M ⁰ Rk,s	[Nm]		13,3		32	2,1	6	1,1
Herausziehen							1.1				
Einschraubtiefe	h _{non}	n,standard	h _{nom}	[mm]	40	55	75	70	85	100	11
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25		N _{Rk,p}	[kN]	5,5	4,5	13	12	20	20	32	
Charakteristisch gerissenem Beto	e Tra	ıgfähigkeit in	N _{Rk,p}	[kN]	3,5	2	4	6	9	12	16
Einschraubtiefe			h _{nom}	[mm]	35 ¹⁾	50	65	60	75	90	10
Charakteristisch ungerissenem B	e Tra	gfähigkeit in	N _{Rk,p}	[kN]	4	4	10	10	17	16	26
Charakteristisch gerissenem Beto	e Tra	gfähigkeit in	N _{Rk,p}	[kN]	2,5	1,5	3	5	7	9,5	13
Erhöhungsfakto											Ulun
Erhöhungsfaktor								1,22			
Druckfestigkeits			Ψο	[-]				1,41			
en		C50/60						1,58			-
Betonausbruch	und										
			hef,standard	ļ.,	23	36	49	44	56	65	77
Effektive Verank	cerun	gstiere	hef,reduced	[mm]	19	32	40	35	48	56	69
F-146"-	geri	ssen	k _{cr,N}	[-]				7,7			
Faktor für	ung	erissen	Kurc,N	[-]				11,0			
D 1	Ran	dabstand	Ccr,N	[mm]				1,5 h∈	ef		
Betonausbruch	Ach	sabstand	Scr,N	[mm]				3 hef			
_		ırakt. gfähigkeit	N ⁰ _{Rk,sp}	[kN]			N ⁰ Rk	,sp = N	Rk,p ²⁾		
Spalten		dabstand	C _{cr,sp}	[mm]				1,5 h∈	f		
	-	sabstand	S _{cr,sp}	[mm]				3 hef			
Montagebeiwert			γinst	[-]		1	,2			1,0	
Betonausbruch		der lastabgev									
k-Faktor für h _{ef,st}			k ₈	[-]			1,0			2	,0
k-Faktor für hef,reduced			k ₈	[-]			1	,0			2,0
Betonkantenbru		THE POST OF THE							K 16. 15.		
Wirksame Dübel		9	lf	[mm]		I	f = zu	ghöriç	ges h	ef	
Wirksamer Durc			d _{nom}	[mm]		6		8	3	1	0
					_					V-12/1	

¹⁾ Nur für statisch unbestimmte System, nur in trockenen Innenräumen

MULTI-MONTI-plus

Leistungen

Charakteristische Werte für statische und quasi-statische Zugbeanspruchung

Anhang C 2

²⁾ Für N_{Rk,p} gilt der Wert in gerissenem Beton

Tabelle C3.1: Leistung für die seismische Leistungskategorie C1 MMS-plus C-Stahl

Größe MMS	-plus			10	1	12	16	20	
Einschraubti	efe	h _{nom}	[mm]	65	75	90	115	140	
Stahlversag	jen für Zug- u	nd Quertr	agfähigk	eit					
		N _{Rk,s,c1}	[kN]	24,1 37,4		100,0	142,7		
Charakterist		γMs,c1	[-]						
Tragfähigkei Teilsicherhe		V _{Rk,s,c1}	[kN]	9,6	9,6 16,9			91,0	
rensicheme	itsbeiwerte	γMs,c1	[-]			1,25			
Faktor für Ringspalt α _{gap} [-]									
Herauszieh	en								
Charakteristische Tragfähigkeit in gerissenem Beton		N _{Rk,p,c1}	[kN]	6,8	9,0	12,0	21,0	33,0	
Betonausbr	uch								
Effektive Verankerung	gstiefe	h _{ef}	[mm]	50	57	70	90	114	
Betonaus- bruch	Rand- abstand	C _{Cr,N}	[mm]			1.5 h _{ef}			
	Achs- abstand	S _{cr,N}	[mm]			3 h _{ef}			
Montagebeiv	vert	γinst	[-]			1,0		NO SPORT MILES DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION	
Betonausbr	uch auf der la	stabgewa	ndten S	eite					
k-Faktor		k ₈	[-]	1,0 2,0					
Betonkante	nbruch								
Wirksame D	Wirksame Dübellänge If = hef [mm]			50	57	70	90	114	
Wirksamer D	Ourchmesser	d _{nom}	[mm]	8 10 14				18	

MULTI-MONTI-plus	
Leistungen Charakteristische Werte für die seismische Einwirkung C1	Anhang C 3

Tabelle C3.2: Leistung für die seismische Leistungskategorie C2 MMS-plus C-Stahl 1)

Größe MMS-plus			16	20	
Einschraubtiefe	h _{nom}	[mm]	115	140	
Stahlversagen für Zug- und Quertr	agfähigke	eit			
	N _{Rk,s,c2}	[kN]	100,0	142,7	
Charakteristische Tragfähigkeit und	γMs,c2		1	,5	
Teilsicherheitsbeiwerte	V _{Rk,s,c2}	[kN]	26,1	57,7	
	γMs,c2		1,	25	
Faktor für Ringspalt	α_{gap}	[-]	0	,5	
Herausziehen					
Charakteristische Tragfähigkeit in gerissenem Beton	N _{Rk,p,c2}	[kN]	14,0	18,1	
Betonausbruch					
Effektive Verankerungstiefe	h _{ef}	[mm]	90	114	
Betonaus- Randabstand	C _{Cr,N}	[mm]	1.5	h _{ef}	
bruch Achsabstand	S _{cr,N}	[mm]	3	h _{ef}	
Montagebeiwert	γinst	[-]	1,0		
Betonausbruch auf der lastabgewa	ndten Se	ite			
k-Faktor	k ₈	[-]	2,0		
Betonkantenbruch					
Wirksame Dübellänge	I _f = h _{ef}	[mm]	90	114	
Wirksamer Durchmesser	d _{nom}	[mm]	14	18	

 $^{^1)}$ Verschiebungen $\delta_{N,c2}\, und \,\, \delta_{V,c2}$ sind nicht bewertet

MULTI-MONTI-plus	
Leistungen Charakteristische Werte für die seismische Einwirkung C2	Anhang C 4

Tabelle C4: Leistung unter Brandbeanspruchung MMS-plus C-Stahl

Größe MMS-p	Größe MMS-plus			6		7,5		10		12		16		20
Einschraubtiefe		h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Charakteristis	che Tragfähigk	eit für 2	Zug und	Que	rzug	F _{Rk,fi}	= N	Rk,s,fi	= NRk,	_{p,fi} =	V _{Rk,s,f}	i		
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
01 11 11	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Charakteristi- sche	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
	R30	M ⁰ Rk,s,fi	[Nm]	0,5		1,1		2,7		5,3		16,4		36,6
Tragfähigkeit	R60	M ⁰ Rk,s,fi	[Nm]	0	,3	0,6		1,5		2,8		8,9		19,8
	R90	M ⁰ Rk,s,fi	[Nm]	0	,2	0,4		1,1		2,0		6,4		14,2
	R120	M ⁰ Rk,s,fi	[Nm]	0	,2	0,3		0,9		1,6		5,1		11,4
Randabstand							7							
	R30 bis R120	C _{cr,fi}	[mm]						2	Nef				
Achsabstand								10						N. Carl
	R30 bis R120	S _{cr,fi}	[mm]					1000 HIS	2 0	cr,fi				

Tabelle C5: Leistung unter Brandbeanspruchung MMS-plus nichtrostender Stahl

Größe MMS-pl	us				7,5	ia ya	1	0	1	2		
Einschraubtiefe	h _{nom,standard}		[mm]	40	55	75	70	100	115			
Einschraubtiefe	h _{nom,reduced}		[mm]	35	50	65	60	75	5 90 10			
Charakteristis	che Tragfähigk	ceit für Z	Zug und	Que	rzug		- N - N					
FRK,fi = NRK,s,fi	$= N_{Rk,p,fi} = V_{Rk,s}$,fi										
	R30	F _{Rk,fi}	[kN]	0,5	1	,1	1,4	2,3	3,0	3,9		
Ch avaleta viati	R60	F _{Rk,fi}	[kN]	0,5	0,8		1,4	1,4	2,1	2,1		
	R90	F _{Rk,fi}	[kN]	0,5	0,5		1,0	1,0	1,5	1,5		
Charakteristi-	R120	F _{Rk,fi}	[kN]	0,4	0,4		0,8	0,8	1,2	1,2		
che	R30	M^0 Rk,s,fi	[Nm]		1,1		2,7		5,3			
Tragfähigkeit	R60	M ⁰ Rk,s,fi			0,6		1	0,8 1,2 ,7 5 ,5 2	8			
	R90	M ⁰ Rk,s,fi	[Nm]		0,4		1	,1	90 3,0 2,1 1,5 1,2	,0		
	R120	M ⁰ Rk,s,fi	[Nm]		0,3		0	,9	1	6		
Randabstand												
	R30 bis R120	Ccr,fi	[mm]				2 hef					
Achsabstand												
	R30 bis R120	Scr,fi	[mm]				2 Ccr,fi					

MULTI-MONTI-plus	
Leistungen Charakteristische Werte unter Brandbeanspruchung	Anhang C 5

Tabelle C6: Verschiebungen unter Zuglast MMS-plus C-Stahl

Größe MMS-plus	1		11/2	6	7	,5	1	0	1	2	16		20	
Einschraubtiefe	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140	
Zuglast ungerissener Beton	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3	
\/avaabiabaa	δνο	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	
Verschiebung	δ _{N∞}	[mm]	0,3	0,3	0,4	1,1	0,8	0,7	0,7	0,6	0,1	0,1	0,1	
Zuglast gerissener Beton	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	9,5	14,2	20,9	
\/	δνο	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
Verschiebung	δ _{N∞}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	1,4	1,4	0,7	

Tabelle C7: Verschiebungen unter Zuglast MMS-plus nichtrostender Stahl

Größe MMS-plus		8 100		7,5		1	0	1	2
Einschraubtiefe hnom,stan	dard	[mm]	40	55	75	70	85	100	115
Einschraubtiefe hnom,redu	iced	[mm]	35	50	65	60	75	90	105
Zuglast ungerissener Beton	N	[kN]	2,4	2,1	6,2	5,7	9,5	9,5	14,3
Maradaiahana	δνο	[mm]	1,4	1,3	2,5	2,3	2,7	10,3	3,7
Verschiebung	δν∞	[mm]	2,1	1,9	3,8	3,5	4,0	15,9	5,5
Zuglast gerissener Beton	N	[kN]	1,4	0,7	1,9	2,9	4,3	5,7	7,6
\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	δνο	[mm]	1,3	0,2	0,3	0,6	0,5	1,3	1,4
Verschiebung	δ _{N∞}	[mm]	1,9	0,3	0,5	0,9	0,8	1,9	2,2

MULTI-MONTI-plus	
Leistungen Verschiebungen unter Zuglast	Anhang C 6

Z46946.21 8.06.01-708/20

Tabelle C8: Verschiebungen unter Querlast MMS-plus C-Stahl

Größe MMS-plus		6		7,5		10		12		16		20		
Einschraubtiefe	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140	
Querlast														
ungerissener und	V	[kN]	2	2,0		4,0		8,0		12,0		22,6		
gerissener Beton														
Verschiebung	δ_{V0}	[mm]	0,1	0,1	0,1	0,1	0,2	0,1	0,	2	2 2,9		3,4	
verscriebung	δ∨∞	[mm]	0,2	0,2	0,1	0,2	0,2	0,2	0,	3	4,	4	5,1	

Tabelle C9: Verschiebungen unter Querlast MMS-plus nichtrostender Stahl

Größe MMS-plus				7,5		1	0	12	
Einschraubtiefe hnom,stand	dard	[mm]	40	55	75	70	85	5 100	
Einschraubtiefe hnom,redu	Einschraubtiefe hnom,reduced		35	50	65	60	75	90	105
Querlast ungerissener und gerissener Beton	V	[kN]	3,9	4,8	6,2	8,1	12,9	10,5	12,4
	δνο	[mm]	2,7	3,5	3,1	2,7	3,3	3,2	3,3
Verschiebung	δ∨∞	[mm]	4,0	5,3	4,6	4,1	4,9	4,8	5,0

MULTI-MONTI-plus

Leistungen

Verschiebungen unter Querzuglast

Anhang C 7

HECO-Schrauben GmbH & Co.KG

Dr.-Kurt-Steim-Straße 28 · D-78713 Schramberg
Tel.: +49 (0) 74 22 / 989-0 · Fax: +49 (0) 74 22 / 989-200
Mail: info@heco-schrauben.de · www.heco-schrauben.de